(additivity)= # Returns Additivity Let * $p_t$ = price at time $t$ * $\hat r_t = \frac{p_t}{p_{t-1}} - 1$ be the actual (arithmetic) return at time $t$ * $r_t = \ln\frac{p_t}{p_{t-1}}$ be the log return at time $t$. Consider the following table of TQQQ prices for ten trading days and their corresponding returns: | Period | Date | $p_t$ | Actual return $\hat r_t$ | Log return $r_t$ | | :----: | :--------- | ----------: | :----------------------: | :--------------: | | 0 | 2025‑04‑25 | 53.86 | – | – | | 1 | 2025‑04‑28 | 53.82 | −0.000743 | −0.000743 | | 2 | 2025‑04‑29 | 54.87 | 0.019509 | 0.019322 | | 3 | 2025‑04‑30 | 54.88 | 0.000182 | 0.000182 | | 4 | 2025‑05‑01 | 56.77 | 0.034439 | 0.033859 | | 5 | 2025‑05‑02 | 59.43 | 0.046856 | 0.045791 | | 6 | 2025‑05‑05 | 58.40 | −0.017331 | −0.017483 | | 7 | 2025‑05‑06 | 56.74 | −0.028425 | −0.028836 | | 8 | 2025‑05‑07 | 57.40 | 0.011632 | 0.011565 | | 9 | 2025‑05‑08 | 59.11 | 0.029791 | 0.029356 | **Analysis of Returns** * **Sum of actual returns:** $$ \sum_{t=1}^{9} \hat r_t = -0.000743 + 0.019509 + \cdots + 0.029791 = 0.09591\;(=9.59\%). $$ * **Compounded actual return:** $$ \prod_{t=1}^{9}(1+\hat r_t) - 1 = 1.02\ldots - 1 = 0.09747\;(=9.75\%). $$ * **Sum of log returns:** $$ \sum_{t=1}^{9} r_t = -0.000743 + 0.019322 + \cdots + 0.029356 = 0.09301\;(=9.30\%). $$ * **Converted to actual return:** $$ e^{\sum_{t=1}^{9} r_t} - 1 = e^{0.09301} - 1 = 0.09747\;(=9.75\%). $$ **Key Insights** * The sum of log returns equals the log of the total price ratio: $\displaystyle \sum_{t=1}^T r_t = \ln\frac{p_T}{p_0}.$ * Exponentiating the sum of log returns reproduces the compounded return. * Simply summing arithmetic returns (9.59%) underestimates the true compounded return (9.75%). * The return obtained via exponentiating the sum of log returns (9.75%) and the compounded actual return (9.75%) are effectively identical—showing how closely these methods agree. * The gap between summed and compounded returns widens with more periods or greater volatility.