Returns Additivity

Let

  • \(p_t\) = price at time \(t\)

  • \(\hat r_t = \frac{p_t}{p_{t-1}} - 1\) be the actual (arithmetic) return at time \(t\)

  • \(r_t = \ln\frac{p_t}{p_{t-1}}\) be the log return at time \(t\).

Consider the following table of TQQQ prices for ten trading days and their corresponding returns:

Period

Date

\(p_t\)

Actual return \(\hat r_t\)

Log return \(r_t\)

0

2025‑04‑25

53.86

1

2025‑04‑28

53.82

−0.000743

−0.000743

2

2025‑04‑29

54.87

0.019509

0.019322

3

2025‑04‑30

54.88

0.000182

0.000182

4

2025‑05‑01

56.77

0.034439

0.033859

5

2025‑05‑02

59.43

0.046856

0.045791

6

2025‑05‑05

58.40

−0.017331

−0.017483

7

2025‑05‑06

56.74

−0.028425

−0.028836

8

2025‑05‑07

57.40

0.011632

0.011565

9

2025‑05‑08

59.11

0.029791

0.029356

Analysis of Returns

  • Sum of actual returns:

    \[ \sum_{t=1}^{9} \hat r_t = -0.000743 + 0.019509 + \cdots + 0.029791 = 0.09591\;(=9.59\%). \]
  • Compounded actual return:

    \[ \prod_{t=1}^{9}(1+\hat r_t) - 1 = 1.02\ldots - 1 = 0.09747\;(=9.75\%). \]
  • Sum of log returns:

    \[ \sum_{t=1}^{9} r_t = -0.000743 + 0.019322 + \cdots + 0.029356 = 0.09301\;(=9.30\%). \]
  • Converted to actual return:

    \[ e^{\sum_{t=1}^{9} r_t} - 1 = e^{0.09301} - 1 = 0.09747\;(=9.75\%). \]

Key Insights

  • The sum of log returns equals the log of the total price ratio: \(\displaystyle \sum_{t=1}^T r_t = \ln\frac{p_T}{p_0}.\)

  • Exponentiating the sum of log returns reproduces the compounded return.

  • Simply summing arithmetic returns (9.59%) underestimates the true compounded return (9.75%).

  • The return obtained via exponentiating the sum of log returns (9.75%) and the compounded actual return (9.75%) are effectively identical—showing how closely these methods agree.

  • The gap between summed and compounded returns widens with more periods or greater volatility.