Returns Additivity
Let
\(p_t\) = price at time \(t\)
\(\hat r_t = \frac{p_t}{p_{t-1}} - 1\) be the actual (arithmetic) return at time \(t\)
\(r_t = \ln\frac{p_t}{p_{t-1}}\) be the log return at time \(t\).
Consider the following table of TQQQ prices for ten trading days and their corresponding returns:
Period |
Date |
\(p_t\) |
Actual return \(\hat r_t\) |
Log return \(r_t\) |
---|---|---|---|---|
0 |
2025‑04‑25 |
53.86 |
– |
– |
1 |
2025‑04‑28 |
53.82 |
−0.000743 |
−0.000743 |
2 |
2025‑04‑29 |
54.87 |
0.019509 |
0.019322 |
3 |
2025‑04‑30 |
54.88 |
0.000182 |
0.000182 |
4 |
2025‑05‑01 |
56.77 |
0.034439 |
0.033859 |
5 |
2025‑05‑02 |
59.43 |
0.046856 |
0.045791 |
6 |
2025‑05‑05 |
58.40 |
−0.017331 |
−0.017483 |
7 |
2025‑05‑06 |
56.74 |
−0.028425 |
−0.028836 |
8 |
2025‑05‑07 |
57.40 |
0.011632 |
0.011565 |
9 |
2025‑05‑08 |
59.11 |
0.029791 |
0.029356 |
Analysis of Returns
Sum of actual returns:
\[ \sum_{t=1}^{9} \hat r_t = -0.000743 + 0.019509 + \cdots + 0.029791 = 0.09591\;(=9.59\%). \]Compounded actual return:
\[ \prod_{t=1}^{9}(1+\hat r_t) - 1 = 1.02\ldots - 1 = 0.09747\;(=9.75\%). \]Sum of log returns:
\[ \sum_{t=1}^{9} r_t = -0.000743 + 0.019322 + \cdots + 0.029356 = 0.09301\;(=9.30\%). \]Converted to actual return:
\[ e^{\sum_{t=1}^{9} r_t} - 1 = e^{0.09301} - 1 = 0.09747\;(=9.75\%). \]
Key Insights
The sum of log returns equals the log of the total price ratio: \(\displaystyle \sum_{t=1}^T r_t = \ln\frac{p_T}{p_0}.\)
Exponentiating the sum of log returns reproduces the compounded return.
Simply summing arithmetic returns (9.59%) underestimates the true compounded return (9.75%).
The return obtained via exponentiating the sum of log returns (9.75%) and the compounded actual return (9.75%) are effectively identical—showing how closely these methods agree.
The gap between summed and compounded returns widens with more periods or greater volatility.